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°K degrees Kelvin :
F Farad

G Gauss

H Henry

HF High Frequency
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SECTION I

INTRODUCTION

When electromagnetic waves are propagated through the troposphere and ionosphere,
they undergo a change in direction or refractive bending. This phenomenon which arises
from the nonhomogeneous characteristics of the media introduces an angular error in radar
measurement data (Millman, 1958).

The deviation of the elevation angle of radar waves by the troposphere is independent
of frequency, and the deviation by the ionosphere is frequency dependent, i.e., inversely
proportional to frequency squared (Millman, 1958). However, in the case of the troposphere,
the angular deviation is directly proportional to the surface refractivity, No, i.e., the
deviation increasing with increasing No (Millman, 1970).

In predicting the range-coverage performance of an HF backscatter radar or the
transmission-frequency requirements of a communications system, ionospheric propaga-
tion characteristics are only considered. The effects of the tropospheric refractive
properties are in general not taken into account. However, a preliminary examination of
the HF propagation phenomena has revealed that the ground scatter distance and the true

and virtual reflection heights are modified when tropospheric refraction effects are taken
into account (Millman, 1975).

In this report, an estimate is made of the effect of tropospheric refractive bending on
the propagation of HF radio waves. The index of refraction in the troposphere is modeled
in terms of the CRPL Reference Refractivity Atmosphere - 1958, while the index of re-
fraction in the ionosphere is defined in terms of the transverse-ordinary mode of propagation.
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SECTION II
THEORETICAL CONSIDERATIONS

2.1 TROPOSPHERIC INDEX OF REFRACTION

The index of refraction, n, in the troposphere, can be expressed in terms of the

functions
6
N=(n-1)x10 (2-1)
and
_ A2 be L
N = 3 (p+,r) 2-2)

where N is the refractivity, T is the air temperature (*K), p is the total pressure (mbar)
and ¢ is the partial pressure of water vapor (mbar). According to Smith and Weintraub
(1953), the constants, a and b, are 77. 6°K/mbar and 4810°K, respectively.

It should be noted that the above expression for the refractivity of air is independent
of frequency in the 100~ to 30, 000-MHz range. The first term in Equation (2-2), ap/T,
applies to both optical and radio frequencies, and is often referred io as the dry term.

The second term, abe /Tz, which is the wet term, is the water vapor relationship required
only at radio frequencies.

The tropospheric refractive index model employ »d in this analysis is the CRPL
Reference Refractivity Atmosphere - 1958 (Bean and Dutton, 1966) which is described by

N(h) = N°+(h-ho)AN (2=3)

where N= (n-1)x 106. No is the surface refractivity, ho is the surface height above mean
sea level and n is the index of refraction. This expression is valid for ho <hzg (h°+1) km.
The parameter, AN, is defined by

N = -7,32 exp (0.005577 No) (2-4)
For the region defined by (h o4-1) < h < 9 km, the refractivity decays as

Nm) = N1 exp(-c(h-h -1)) (2=5)

I N ¥ T W o LN




where N, is the value of N(h) at 1 km above the surface and

1

e ()
°=§-n, % \105 2-6)

Above 9 km, the exponcatial decay is of the form
N(h) = 105 exp [-0.1424 (h-9)] 2-7)
Surface refractivities of 320-N and 400-N units were only considered. The latter is

representative of severe refraction conditions while the former of average conditions.
Figure 2-1 contains plots of the atmospheric refractivity models as a function of altitude.

2.2 IONOSPHERIC INDEX OF REFRACTION

The index of refraction in the ionosphere can be expressed by the relstionship

/2 - 1/2
©N 2 | Ne e2
n={1-{— = [1 3 (2-8)
€Em w
o e

where wN is the angular plasma f-equency of the medium(rad/s), N is the electron dunsity
(electrons/m ) e i3 the electron charge (1.6 x 10 R C), mg is the electron mass (9.1 x

kg), €, 18 the electric permittivity of free space (10"%/36 x F/m) and w is the angular
frequency of the incident wave (rad/s).

The distribution of electron density with height is assumed to follow the Chapman
model of the form

h-h -th-h_)
= 1 - m _ S
Ne = Nm exp 32 [1 ’ exp ( Hs )}! (2-9)

where H . is the scale height of the neutral particles and Nm is the electron density at the
level of maximum jonization, hm
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The values of the parameters defining the electron density profiles and the equivalent
plasma frequencies of the maximum ionization levels, used in the calculations, are pre-
seuted in Table 2-1. The electron density levels of models B, C, and D are less than that
of model A by approximately 2.7, 4.0 and 5. 7 percent, respectively. It is evident that the
fonization configurations are basically representative of a daytime ionosphere.

The electron density profiles of models A and D are illustrated in Figure 2-2. Mini-
mum electron density between the E- and Fl-layer is attained at 128.01 km altitude and
between the F1~ and F2-layer at 213, 55-km altitude.

It should be noted that the ionospheric refractive index, given by Equation (2-8), is
also a function of both the electron collision frequency and the earth's magnetic field.

For frequencies on the order of 10 MHz and above, and at altitudes greater than 80 km,
the effect of the collision frequency term on tke index of refraction is negligible (Davies,
1965).

The refractive index is slightly in error when the magnetic field is neglected. The
Appleton-Hartree expression defining the index of refraction as a function of the magnetic
field is discussed in Appendix A. It is found that, when the magnetic field is taken in ac-
count, the refractive index is defined by the following:

1. Longitudinal-ordinary propagation mode
1/2

2 -1
Nee eB
0, 1- —m——i 1+ m, o cos 6 (2-10)

2. Longitudinal-extraordinary propagation mode

- ez -1 1/2
eB }
n, = 1--6—-5‘—“5 [1-m » cosa] @-11)
(o]

2-4
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3. Transverse-ordinary propagation mode

1/2
N e2

Do = 1- 5 (2-12)

4, Transverse-extraordinary propagation mode

Neez Neez
nTx- 1- 1- 3
€eEm w e m w
o
: -1 1/2
Nee eB 2
1-————2 - <m " slnG) (2-13)
€ M w e
0o e

where B is the magnetic induction (Wb/m) and ¢ is the propagation angle, i.e., the angle
between the magnetic field vector and the direction of propagation.

Table 2-2 lists the error in the refractive index for the various modes of propagation.
The calculations are based on the electron density models described in Table 2-1 and on a

magnetic field intensity of 0.5 G (B= 0.5 x 10'4 Wb/mz) which is assumed to be invariant
with altitude.

The errors areevaluated with respect to the traasverse-ordinary mode of propagation
which corresponds to Equation (2-8), the nonmagmetic field case. The lack of values at
10 MHz and 300-km altitude, for all modes of propagation, isdue to the fact that the plasma
frequency at 300 km is greater than 10 MHz, i.e., 10.037 MHz. This results in an ima-
ginary value for the index of refraction at the 300-km level for the transverse-ordinary
mode of propagation. Actually, vertical incidence reflections occur below 300 km. It is
seen the maximum error in the refractive index occurs at the peak of the F2-layer and, at

30 MHz, is less than 0.4 percent. At 20 MHz, the maximum deviation increases to slightly
greater than 1 percent.
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It should be noted that transverse propagation is applicahle, to a first approximation, .
to transmissions originating in the midlatitudes and oriented towards the polar icnosphere.
Longitudinal propagation, on the other hand, applies to midlatitudes transmissions directed
equatorward. The analysis presented in this report utilized the definition of the ionospheric
refractive index given by Equation (2-8).

2.3 COMPUTATIONAL PROCEDURE

In this analysis, it is assumed that (1) the troposphere is contained between the earth's
surface and 30-km altitude, (2) the base of the ionosphere is located at an altitude of 80 km
and (3) free space prevails in the region between the troposphere and the ionosphere.

In evaluating the effects of the tropospheric refraction phenomenon on HF propaga=-
tion, the basirc assumption employed is that both the troposphere and ionosphere can be
considered to be stratified into m spherical layers of thickness, hm, and constant refrac-
tive index, o

The stratified layer method, although approximate in nature, can be greatly improved
by merely increasing the number of layers in the medium, i.e., decreasing the thickness
of each individual layer element (Millman, 1961).

The slab sizes employed in the computations are as follows: 50 m in the altitude region
from h= 0 to 30 km; 50 km from h = 30 to 80 km; and 1 km from h = 80 to 300 km.

2-9/2-10

b nr 35000,




SECTION III
DISCUSSION

Estimates of the effect of tropospheric refraction on HF propagation are presented in
Tables 3-1 through 3-¢ which list the ground scatter distances and the true and virtusl re-
flection heights for transmissions at 10, 20 and 30 MHz and at 1° and 3.5° elevation angles.
The calculations are based on the nonmagnetic field, ionospheric index of refraction, i.e.,
transverse ordinary mode of propagation, defined by Equation (2-8) and apply to the four
electron density models described in Table 2-1.

The analytical expressions for the true reflection height, h o and the virtual reflection
height, h;‘. which are derived in Appendix B, are given by

-1/2
N e2
h =r (n cosE |1~ cmgefommees -1 (8-1)
T oiNe 0 e m
[o] e
and
-1
= S - -
h;. = r {|cos Eo (cos[Eo+ 2ro]) 1 (8-2)

where r ) is the earth's radius, L is the index of refraction at the earth's surface, Eo is
the apparent ground elevation angle and S is the ground scatter distance.

An examination of the data reveals that, for a given set of propagation conditions,
i.e., tropospheric and ionospheric models, the true reflection height is directly propor-
tional to the transmission frequency and to the elevation angle.

It is seen that, for a given electron density model, the true reflection height de-
creases with increasing surface refractivity. The ground scatter distance and the virtual
reflection height, on the other hand, increase with increasing surface refractivity except
in the case of the 20 MHz, 1° elevation anyle data (Table 3-3) where the reverse ocours for
electron density model D. This reversal can be attributed to the fact that the true height
of reflection of N " 0 takes place above the peak of the Fl-layer, i.e., at an sltitude of
214.17 km while the No = 320 and No = 400 reflections occur below the Fl-layer peak, i.e.,
at 181.30- and 179.56-km altitude, respectively.
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It is of interest to note that the decrease ip the ground scatter distance at a surface
refractivity of 400-N units, electron density model A (Table 3-3) is mainly the result of the
true reflection taking place at approximately the peak of the E-layer, i.e., 99.96-km altitude.
This is in contrast with the No = 0 and No = 320 data which reflect at the lower portion of the
Fl-layer, i.¢., 174.41 and 172. 34 km altitude, respectively.

For 10-MHz transmissions at 1° elevation angle (Table 3-1), the differences between
the different surface refractivity (N o) computations appear to be somewhat independent of
the electron density model for the three HF propagation parameters, i.e., ground scatter
distance and true and virtual reflection height.

The 10-MHz, 3.5° elevation angle data (Table 3-2) and the 30-MHz data (Tables 3-5
and 3-6), however, exhibit a definite dependency in the diffecrences between the surface
refractivities with electron density model for both the ground scatter distance and the virtual
reflection height.

For example, for model A which corresponds to the profile with the maximum electron
density, the difference betwcen the N e 0and N ™ 320 and between the No =0 and No = 400
ground scatter distance computations at 30 MHz, 1° elevation angle (Table 3-5) evaluate to
148.42 and 240.48 km, respectively. For maodel D, i.e., minimum electron density, the
corresponding differences are 63. 12 and 105, 0% km.,

A similar decrease in the differences of the g: ound scatter distance with electron
density model is present in the 10-MHz, 3.5° electron angle data (Table 3-2). It should be
noted, however, that the 30-MHz, 3.5° elevation angle calculations show the reverse effect.

An interesting disclosure in the 20-MHz results, Tables 3-3 and 3-4, is the existence
of long-range propagation paths for specific tropospheric and ionospheric conditions.

It is noted that long-range propagation, i.e, ground scaiter :istances greater than
approximately 4569 km, generally tends to occur for rays undergoing reflection at altitudes
on the order of 214 km. According to Figure 2-2, this is slightly above the altitude where
the F1- and F2-layer are joined together, the ionization valley being located at 213, 55-km
altitude.




Figures 3-1 through 3-3 disclose 20-MHz high-ray one-hop F1 mode of propagation
(Pederson ray) at distances up to 6200 km, with maximum range being attained at elevation
angles between approximately 1° and 3.5°. As illustrated in Figure 3-4, a slight variation
in the electron density profile can result in: (1) the maximum range being acquired at the
lowest elevation angle and, (2) the disappearance of the F1 propagation mode.

Long-distance one-hop F1 propagation over approximately a 4500~km path has been
observed by Tveten (1961). Propagation by the one~hop F2 mode over a 5300-km path is
possible according to the experimental measurements of Warren and Hagg (1958) and the
theoretical calculations of Kift (1958).

Utilizing ray tracings techniques, Muldrew and Maliphant (1962) investigated the
properties of long-distance, one-hop propagation. They found that long-distance propaga-
tion may occur via the F1- and as well as the F2-layer and that one-hop propagation may ex-
tend to ranges in excess of 7500 km in the temperate regions and 10, 000 km in the equa-
torial region.

It should be apparent from Figures 3-1 through 3-4 which are visual representations
of the c'ata in Tables 3-3 and 3-4 that, at low elevation angles, the ground scatter distance
is contrclled to some extent by the ‘roposphere. As previously mentioned, when tropospheric
refraction is severe (i.e., high surface refractivity) the ground scatter distance is generally
a maximum It is a minimum when the surface refractivity is not taken into account (i.e.,
No = 0). For example, the ground scatter reflection point, at 2° elevation angle for iono-
spheric model D, Figure 3-4, evaluaies to 5052.50 km for No = 400 and decreases to
4966. 34 km for No = 320 and 4738. 26 km for No = 0,

At the critical (maximum) elevation angle, i.e., the angle beyond which the rays no
longer undergo reflection but are transmitted through the ionosphere, the difference in the
ground scatter distances is markedly reduced.

The maximum elevation angles corresponding to the propagation conditions described
in Tables $-1 through 3-¢ are listed in Table 3-7. It is seen that the angle is a minimum
for N A 0 and increases as N S increases, the greatest differential between the N e 0 and
the No = 400 values being acl.ieved at the highest frequency.
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TABLE 3-7
MAXIMUM ELEVATION ANGLES

Surface Maximum
Frequency Electron Refractivity Elevation Angle
(MHz) Density Model (N Units) (Deg)
10 A 0 90°
320 90°
400 90°
B 0 81.47
320 81.47
3 400 81.47
E c 0 78.99
320 79.00
400 79.00
D 0 77.01
1 320 77.02
| 400 77.02
b 20 A 0 25,07
| 320 25.11
B 400 25.12
B 0 24.51
L‘ 320 24.55
; 400 24.56
! Cc 0 24.23
320 24.27
400 24.28
D 0 23.96
320 24.01
400 24,02
30 A 0 9.63
320 9.73
400 9.76
B 0 9.04
320 9.15
400 9.18
Cc 0 8.74
320 8.86
400 8.89
D 0 8.44
320 8.56
400 8.59
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An additional feature of interest in Figures 3-1 through 3-3 is the indication of the
possible existence of multiple rays incident at the same location on the earth's surface com-
mencing at distances greater than about 3800 km. This phenomenon implies that there is

a focusing of the rays which results in an apparent enhancement of the incident radiation
at the long ranges.

An evaluation of HF radio focusing at maximum range caused by the ionization distri-
bution between ionospheric layers has been made by Croft (1967).

Figures 3-5 and 3-6 are plots of the radar range, i.e., group path length, as a

function of the ground scatier distance at a frequency of 20 MHz for ionospheric models A
and D, respectively.

It is seen that, for a given set of propagation conditions, i.e., ionospheric model and
high- or low-ray propagation mode, a linear relationship exists between the radar runge
and the ground scatter distance which is independent of the tropospheric refraction condi-
tions. It follows, therefore, that there is no need to take into account the effect of refrac-

tive bending in the troposphere when determ‘aing the locationof an object in space by HF
backscatter radar techniques,

On comparing Figure 3-5 with Figure 3-6, it is found that the high-ray (F2 mode)

slopes are pructically the same. An identical situation exists for the slopes of the low rays
(F2 mode).

The presence of the low ray (F1 mode) and the high ray (F1 mode) in Figure 3-5 is
consistent with the data presented in Figure 3-1.

The 30-MHz radar-range data shown in Figures 3-7 and 3-8 also display similar slopes
for the low rays and for the high rays. It is noted that the slope of the data points of the hirzh
rays is slightly greater than that of the low rays for both the 20~ and 30-MHz computations.

The linear relationships between the radar ranges and the ground scatter distances
illustrated in Figures 3-5 through 3-8 are summarized in Table 3-8,

Additional items which should be mentioned with regard to the 30-MHz data are:
(1) long-range propagation beyond 4500-km ground distance was not attainable for the four
ionospheric: models considered in this analysis, (2) the elevation angle versus ground scatter
distance plots were similar in appearance to the curves illustrated in Figure 3-4, and (3)
the grounc distance traversed by the high rays tended to approach that of the low rays.
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SECTION IV

CONCLUSIONS

The presence of tropospheric bending tends to have the following effects on HF propa-
gation: to decrease the true height of reflection and, for the most part, to increase the sur=-
face distance over which the waves can be transmitted and to increase the virtual height of

reflection.

Slight variations in the ionospheric electron density distribution could result in the
ground scatter distance and virtual reflection height decreasing witb increasing geverity of
tropospheric refraction.

Inasmuch as a linear relationship exists between the radar range, i.e., group path
length, and the surface distance, tropospheric refraction effects need not be taken into ac=
count when deducing the location of a target by means of HF backscatter radar techniques.

Long distance propagation beyond 4500 km appears to occur for rays: (1) having very
low takeoff angles, i.€., less than about 4° and, (2) undergoing reflection in the altitude
region where the F1 and F2 layers are joined together.

It is found that, for the electron density models considered in this analysis, the long=-
distance propagation mode is frequency sensitive in that the extended surface coverage
occurred only at 20 MHz and not at 10 and 30 MHz.
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APPENDIX A
IONOSPHERIC REFRACTIVE INDEX

The index of refraction in the ionosphere in the absence of electron collisious, i.e.,
absorption, is defined by (Ratcliffe, 1959)

2 _ 2X(1 = X)
n =1= . > - " 1/2 &-1)
2(1-)’()—Y,r + [YT +4YL (1-X) ]
where
“N 2
X -(-—) (A-2)
W
W
= H L
Yo = —sing (A-3)
“y
YL = —=cos § (A-4)

and where 6 is the propagation angle, i.e., the angle between the magnetic field vector and
the direction of propagation, and w is the angular frequency of the transmitted wave (rad/s).

The parameter, Wy is the angular gyromagnetic frequency of the electrons about the
earth's magnetic field and is given by
w =-—e—B=-r-ne—-y H (A"s)

H me e°

where e is the electron charge (1. 6 x 10 C), m, is the electron mass (9.1 x 10 kg),
B is the magnetic induction (Wb/m % o is the permeablllty of free space (47 x 10~ H/m)
and H s the magnetic ficld intensity (ampere—turns/m)

The term, W is the angular plasma frequency of the ionosphere and is given by
2
9 ) Ne e
N T e

m (A-6)
e

where N is the =lectron density (electrons/m ), and €, is the permittivity of free space
-9
(10° /36« F/m),

- PR i i —— B




According to Equation (A-1), there are two values for the refractive index. The
positive sign is associated with the ordinary wave while the negative sign with the extra-

ordinary wave,

The quasi-longitudinal mode of propagation can be represented by the condition
. _

2 2
4Y, (1-X)">> Y (A-T)
Thus, for the quasi-longitudinal case, the refractive index simplific: to
2 X
0y = 1- Tzv. (A-8)
L
Substituting Equations (A-2) and (A-4) in this expression, it follows that
i 2 . -1 1/2
- | X e : -
o, = |1 (w) [1+w cose] (A-9)
o 5 i} . |12
= XN ! | 5
Ny = 1-((») [1 o ©0os 6] (A-10)

where the subscripts, o and x, signify the crdinary and extraordinary wave, respectively.

The condition for quasi-transverse propagation is denoted by the inequality

4

Yr

> uf a - X7 (A-11)

which is merely the reverse of Equation (A-7), For this case, Equation (A-1) reduces to

2
By = 1-X (A=12)

2 X(1 - X
np, = 1- —‘—% (A-13)

l-X-YT
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It follows from Equations (A-2) and (A-3) that
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(A-14)

L 11/2
(2 e (2 |- (2 - (S oo ) 1 s

It is evident that the index of refraction for the transverse-ordinary mode of propaga-
tion, Equation (A-14), is independent of the magnetic field parameters.

rx

It is of interest to note that, when the magnetic induction (or magnetic field intensity)
is assumed to be zero, Equations (A-9), (A-10), and (A-15) simplify to Equation (A-14).
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APPENDIX B

HF PROPAGATION PARAMETERS

B.1 INTRODUCTION

In this appendix, the mathematical formulation of the maximum elevation angle, the
maximum transmission frequency, and the true and virtual reflection heights encountered in
HF propagation is described. In the derivation of the first two items, it is necessary to con-
sider Snell's law for spherically symmetric surfaces, i.e., Bouguer's rule, which states that

noro cos Eo = nr, cos E (B-1)

33 )

where, as shown in Figure B-1, nj is the refractive index at the distance, rj, from the
center of the earth to a spherical surface and E j is the elevation angle at the distance rj,
i.e., the angle between the ray path and the tangent to the spherical surface. The zero

subscript refers to the values of the parameters at the surface of the earith with r, being
the earth's radius.

The index of refraction in the troposphere is dependent on such parameters as the
pressure, P, the temperature, T, and the water vapor pressure, ¢, or, in other words,

n = (P, T, ¢) (B-2)
In the case of the ionosphere, the refractive index function is given by
n = g(Neo f’ B’ V) (B-3)

where Ne is electron density, f is the transmission frequency, B is the magnetic induction

and v is the electron collision frequency. In this analysis, the dependency of n on B and
v is neglected.

It is noted that, for over-the-horizon HF propagation, ionospheric reflection takes
place when Ej = 0 in Equation (B-1).
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Referring to Figure B-1, the radar range, Rr' is computed utilizing the relationship
(Millman, 1961)

) J R ‘
_ m
Rr = nm Rm +Rs + E = | (B-4)
m
m=20 m=20_

where the first term is the tropospheric component, the second is the free space component
and the third is the ionospheric component.

B.2 MAXIMUM ELEVATION ANGLE

A typical plot of elevation angle as a function of ground scatter distance for a fixed
transmission frequency is illustrated in Figure B-2. The elevation angle, Ejun' is the
take~off angle at which propagation to the skip distance is attained and is the angle cor-
responding to the junction point between the low-angle ray and the high-angle ray or
Pedersen ray (Davies, 1965),

To deduce the elevation angles at which high ray propagation is satisfied, it is neces-
sary to consider Snell's law, Equation (B-1), The maximum elevation angle, Emax' at
which transmissions can be made and still undergo ionospheric reflection is defined for
the condition in which the product of n and r is a minimum, It follows that the analytical
expression for this parameter is given by

(nr)
E = cos"l[ min] (B=5)

m r
ax no °
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B.3 MAXIMUM TRANSMISSION FREQUENCY

The maximum frequency in the HF band that can encounter ionospheric reflection can
be determined from Snell's law for spherically-symmetric surfaces, Equation (B-1), in
conjunction with definition of the ionospheric refractive index.

For the transverse-ordinary prbpagatlon mode, i.e., the nonmagnetic field case, as
given by Equation (2-8) (or Equation (2-12)), the maximuin reflection frequency, fm, can be

expressed by
1/2
Nm e2
fm = e - 5 (B-6)
41r2 € me 1- (;—o_._—g— cos Eo)
0 m

where N_ is the maximum electron density (electrons/ma) at the altitude, hm’ e is the
electron charge (1.6 x 10"19 C), m, is the electron mass (9.1 x 10'31

kg) and €o is the
permittivity of free space '(10-9/361r F/m).

It is seen that the maximum frequency for ionospheric reflection is basically a function
of the maximum electron density along the propagation path, the altitude of the ionization
maximum and the transmission-elevation angle.

It follows that, for ionospheric model A N, =125x 1012 electrons/m° and

hm = 300 km), as described in Table 2-1, n e 1 and Eo = 1°, the maximum reflection fre-
quency evaluates to 33,798 MHz, When n o 1. 0004 (surface refractivity No = 400), fm in-
creases to 33.939 MHz,

B.4 TRUE REFLECTION HEIGHT

An additional parameter that can be deduced from Equation (B-1) is the true iono-
spheric reflection height, hr’ of a transmitted signal. On combining Equation (2-8) (or
Equation (2-12)) with Equation (B-1), it is found that
-1/2
N e2

e

h.=r (n cosE 1- -1 (B-7;
r 2 ° 9 4r fome;

B=5
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B.5 VIRTUAL REFLECTION HEIGHT

For an HF signal reflected obliquely from the ionosphere to a surface distance, S,
the virtual (or apparent) height of reflection is the height of the equivalent linear path of

the oblique signal.

As depicted in Figure B-3, the virtual reflection height, h;‘, is always greater than
the true reflection height, hr'

Utilizing the law of sines, it is seen that

+h cos E
ro r 0

T = “gin ¢ (B-8)
Since
s\
¢=X. (E + (B-9)
2 o 2ro )

it follows that

-1
o S_ - =
hr = r_ {cos E0 cos [E°+ 3y ] 1 (B-10)
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